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Chapter Five 

Flow over bodies: drag and lift 

 
 

5.1. Introduction 

Fluid flow over solid bodies frequently occurs in practice, and it is responsible for 

numerous physical phenomena such as the drag force acting on automobiles, 

power lines, trees, and underwater pipelines; the lift developed by airplane wings; 

upward draft of rain, snow, hail, and dust particles in high winds; the transportation 

of red blood cells by blood flow; the entrainment and disbursement of liquid 

droplets by sprays; the vibration and noise generated by bodies moving in a fluid; 

and the power generated by wind turbines (Figure 5.1). Therefore, developing a 

good understanding of external flow is important in the design of many 

engineering systems such as aircraft, automobiles, buildings, ships, submarines, 

and all kinds of turbines. Late-model cars, for example, have been designed with 

particular emphasis on aerodynamics. This has resulted in significant reductions in 

fuel consumption and noise, and considerable improvement in handling. 

 

 

 

 

 

 

 

 

 
Figure 5.1: Flow over bodies is commonly encountered in practice. 
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Sometimes a fluid moves over a stationary body (such as the wind blowing over a 

building), and other times a body moves through a quiescent fluid (such as a car 

moving through air). These two seemingly different processes are equivalent to 

each other; what matters is the relative motion between the fluid and the body. 

Such motions are conveniently analyzed by fixing the coordinate system on the 

body and are referred to as flow over bodies or external flow. The aerodynamic 

aspects of different airplane wing designs, for example, are studied conveniently in 

a lab by placing the wings in a wind tunnel and blowing air over them by large 

fans. Also, a flow can be classified as being steady or unsteady, depending on the 

reference frame selected. Flow around an airplane, for example, is always unsteady 

with respect to the ground, but it is steady with respect to a frame of reference 

moving with the airplane at cruise conditions. 

 

5.2. Drag and Lift Forces 

Drag is usually an undesirable effect, like friction, and we do our best to minimize 

it. Reduction of drag is closely associated with the reduction of fuel consumption 

in automobiles, submarines, and aircraft; improved safety and durability of 

structures subjected to high winds; and reduction of noise and vibration. But in 

some cases drag produces a very beneficial effect and we try to maximize it. 

Friction, for example, is a “life saver” in the brakes of automobiles. Likewise, it is 

the drag that makes it possible for people to parachute, for pollens to fly to distant 

locations, and for us all to enjoy the waves of the oceans and the relaxing 

movements of the leaves of trees. 

For two-dimensional flows, the resultant of the pressure and shear forces can be 

split into two components: one in the direction of flow, which is the drag force, and 

another in the direction normal to flow, which is the lift, as shown in Figure 5.2. 
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For three-dimensional flows, there is also a side force component in the direction 

normal to the page that tends to move the body in that direction. 

 

 

 

 

 

 

 

 

 

The pressure and shear forces acting on a differential area dA on the surface are 

PdA and τw dA, respectively. The differential drag force and the lift force acting on 

dA in two-dimensional flow are (Figure 5.2). 

                                                                                                  (5.1) 

 

                                                                                                  (5.2) 

 

where θ is the angle that the outer normal of dA makes with the positive flow 

direction. The total drag and lift forces acting on the body are determined by 

integrating Eqs. 5.1 and 5.2 over the entire surface of the body, 

 

Drag force:                                                                                                  (5.3) 

 

Lift force:                                                                                                     (5.4) 

 

 

Figure 5.2: The pressure and viscous forces acting on a two-dimensional body and the resultant lift 

and drag forces. 
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The wings of airplanes are shaped and positioned specifically to generate lift with 

minimal drag. This is done by maintaining an angle of attack during cruising, as 

shown in Figure 5.3. Both lift and drag are strong functions of the angle of attack, 

as we discuss later in this chapter. The pressure difference between the top and 

bottom surfaces of the wing generates an upward force that tends to lift the wing 

and thus the airplane to which it is connected. For slender bodies such as wings, 

the shear force acts nearly parallel to the flow direction, and thus its contribution to 

the lift is small. The drag force for such slender bodies is mostly due to shear 

forces (the skin friction). 

 

 

 

 

 

 

 

 

 

 

The drag and lift forces depend on the density ρ of the fluid, the upstream velocity 

V, and the size, shape, and orientation of the body, among other things, and it is 

not practical to list these forces for a variety of situations. Instead, it is found 

convenient to work with appropriate dimensionless numbers that represent the drag 

and lift characteristics of the body. These numbers are the drag coefficient CD, and 

the lift coefficient CL, and they are defined as 

 

Drag coefficient:                                                                                        (5.5) 

Figure 5.3: Airplane wings are shaped and positioned to generate sufficient lift during flight while 

keeping drag at a minimum. Pressures above and below atmospheric pressure are indicated by plus 

and minus signs, respectively. 
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Lift coefficient:                                                                                        (5.6) 

 

where A is ordinarily the frontal area (the area projected on a plane normal to the 

direction of flow) of the body. In other words, A is the area that would be seen by a 

person looking at the body from the direction of the approaching fluid. The frontal 

area of a cylinder of diameter D and length L, for example, is A = LD. In lift 

calculations of some thin bodies, such as airfoils, A is taken to be the planform 

area, which is the area seen by a person looking at the body from above in a 

direction normal to the body. The drag and lift coefficients are primarily functions 

of the shape of the body. However, in some cases they also depend on the 

Reynolds number and the surface roughness. The term (½ρV
2
) in Equations 5.5 

and 5.6 is the dynamic pressure. 

 

Example 5.1: The drag coefficient of a car at the design conditions of 1 atm, 70°F 

(ρ = 0.07489 lbm/ft
3
), and 60 mi/h is to be determined experimentally in a large 

wind tunnel in a full-scale test (Figure 5.4). The frontal area of the car is 22.26 ft
2
. 

If the force acting on the car in the flow direction is measured to be 68 lbf, 

determine the drag coefficient of this car. 

Solution: 

The drag force acting on a body and 

the drag coefficient are given by 

 

 

 

 

 
Figure 5.4: Schematic for Example 5.1. 
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where A is the frontal area. Substituting and noting that 1 ml/h = 1.467 ft/s, the 

drag coefficient of the car is determined to be 

 

 

 

5.3. Drag coefficients of common geometries 

The drag coefficient exhibits different behavior in the low (creeping), moderate 

(laminar), and high (turbulent) regions of the Reynolds number. The inertia 

effects are negligible in low Reynolds number flows (Re < 1), called creeping 

flows, and the fluid wraps around the body smoothly. The drag coefficient in this 

case is inversely proportional to the Reynolds number, and for a sphere it is 

determined to be 

 

For sphere:                                                                         (5.7) 

 

Then the drag force acting on a spherical object at low Reynolds numbers becomes 

 

 

 

This relation shows that at very low Reynolds numbers, the drag force acting on 

spherical objects is proportional to the diameter, the velocity, and the viscosity of 

the fluid. This relation is often applicable to dust particles in the air and suspended 

solid particles in water. The drag coefficients for low Reynolds number flows past 

some other geometries are given in Figure 5.5. Note that at low Reynolds numbers, 

the shape of the body does not have a major influence on the drag coefficient. 
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The drag coefficients for various two- and three-dimensional bodies are given in 

Tables 5.1 and 5.2 for large Reynolds numbers. We can make several observations 

from these tables about the drag coefficient at high Reynolds numbers. First of all, 

the orientation of the body relative to the direction of flow has a major influence on 

the drag coefficient. For example, the drag coefficient for flow over a hemisphere 

is 0.4 when the spherical side faces the flow, but it increases three-fold to 1.2 when 

the flat side faces the flow (Figure 5.6). This shows that the rounded nose of a 

bullet serves another purpose in addition to piercing: reducing drag and thus 

increasing the range of the gun. 

 

 

 

Figure 5.5: Drag coefficients CD at low velocities (Re  < 1 where Re = VD/ν and A= πD
2
/4). 
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Table: 5.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A hemisphere at two different orientations for Re > 10
4 

 

Figure 5.6: The drag coefficient of a body may change drastically by changing the body’s 

orientation (and thus shape) relative to the direction of flow. 
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Table: 5.2 (Continued) 
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Example 5.2: 

As part of the continuing efforts to reduce the drag coefficient and thus to improve 

the fuel efficiency of cars, the design of side rearview mirrors has changed 

drastically from a simple circular plate to a streamlined shape. Determine the 

amount of fuel and money saved per year as a result of replacing a 13-cm-diameter 

flat mirror by one with a hemispherical back (Figure 5.7). Assume the car is driven 

24,000 km a year at an average speed of 95 km/h. Take the density and price of 

gasoline to be 0.8 kg/L and $0.60/L, respectively; the heating value of gasoline to 

be 44,000 kJ/kg; and the overall efficiency of the engine to be 30 percent. 

Solution:  

Properties: The densities of air and gasoline 

are taken to be 1.20 kg/m
3
 and 800 kg/m

3
, 

respectively. The heating value of gasoline is 

given to be 44,000 kJ/kg. The drag 

coefficients CD are 1.1 for a circular disk and 

0.4 for a hemispherical body. 

 

 

The drag force acting on a body is determined from 

 

where A is the frontal area of the body, which is A = πD
2
/4 for both the flat and 

rounded mirrors. The drag force acting on the flat mirror is 

 

 

Noting that work is force times distance, the amount of work done to overcome 

this drag force and the required energy input for a distance of 24,000 km are 

 

Figure 5.7: Schematic for Example 5.2. 
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Then the amount and costs of the fuel that supplies this much energy are 

 

 

 

 

 

That is, the car uses 13.9 L of gasoline at a cost of $8.32 per year to overcome the 

drag generated by a flat mirror extending out from the side of a car. 

The drag force and the work done to overcome it are directly proportional to the 

drag coefficient. Then the percent reduction in the fuel consumption due to 

replacing the mirror is equal to the percent reduction in the drag coefficient: 

 

 

 

 

 

 

Since a typical car has two side rearview mirrors, the driver saves more than $10 

per year in gasoline by replacing the flat mirrors with hemispherical ones. 
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5.4. Lift 

Lift was defined earlier as the component of the net force (due to viscous and 

pressure forces) that is perpendicular to the flow direction, and the lift coefficient 

was expressed as, 

                                                                                                 (5.8) 

 

where A in this case is normally the planform area, which is the area that would be 

seen by a person looking at the body from above in a direction normal to the body, 

and V is the upstream velocity of the fluid (or, equivalently, the velocity of a flying 

body in a quiescent fluid). For an airfoil of width (or span) b and chord length c 

(the length between the leading and trailing edges), the planform area is A = bc. 

The distance between the two ends of a wing or airfoil is called the wingspan or 

just the span. For an aircraft, the wingspan is taken to be the total distance between 

the tips of the two wings, which includes the width of the fuselage between the 

wings (Figure 5.8). The average lift per unit planform area FL/A is called the wing 

loading, which is simply the ratio of the weight of the aircraft to the planform area 

of the wings (since lift equals the weight during flying at constant altitude). 

          

 

 

 

 

 

 

 

 

 Figure 5.8: Definition of various terms associated with an airfoil. 
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The flow fields obtained from such calculations are sketched in Figure 5.9 for both 

symmetrical and nonsymmetrical airfoils by ignoring the thin boundary layer. At 

zero angle of attack, the lift produced by the symmetrical airfoil is zero, as 

expected because of symmetry, and the stagnation points are at the leading and 

trailing edges. For the nonsymmetrical airfoil, which is at a small angle of attack, 

the front stagnation point has moved down below the leading edge, and the rear 

stagnation point has moved up to the upper surface close to the trailing edge. To 

our surprise, the lift produced is calculated again to be zero-a clear contradiction of 

experimental observations and measurements. Obviously, the theory needs to be 

modified to bring it in line with the observed phenomenon. 

      

 

 

 

 

 

 

The minimum flight velocity can be determined from the requirement that the total 

weight W of the aircraft be equal to lift and CL = CL, max. That is, 

 

                                                                                                                  (5.9) 

 

For a given weight, the landing or takeoff speed can be minimized by maximizing 

the product of the lift coefficient and the wing area, CL, maxA. One way of doing 

that is to use flaps, as already discussed. Another way is to control the boundary 

layer, which can be accomplished simply by leaving flow sections (slots) between 

the flaps, as shown in Figure 5.10. Slots are used to prevent the separation of the 

Figure 5.9: Irrotational and actual flow past symmetrical and nonsymmetrical two-

dimensional airfoils. 
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boundary layer from the upper surface of the wings and the flaps. This is done by 

allowing air to move from the high-pressure region under the wing into the low-

pressure region at the top surface. Note that the lift coefficient reaches its 

maximum value CL = CL, max, and thus the flight velocity reaches its minimum, at 

stall conditions, which is a region of unstable operation and must be avoided. The 

Federal Aviation Administration (FAA) does not allow operation below 1.2 times 

the stall speed for safety. 

 

 

 

 

 

 

 

 

5.5. Lift Generated by Spinning 

The phenomenon of producing lift by the rotation of a solid body is called the 

Magnus effect after the German scientist Heinrich Magnus (1802–1870), who was 

the first to study the lift of rotating bodies, which is illustrated in Figure 5.11 for 

the simplified case of irrotational (potential) flow. When the ball is not spinning, 

the lift is zero because of top–bottom symmetry. But when the cylinder is rotated 

about its axis, the cylinder drags some fluid around because of the no-slip 

condition and the flow field reflects the superposition of the spinning and 

nonspinning flows. The stagnation points shift down, and the flow is no longer 

symmetric about the horizontal plane that passes through the center of the cylinder. 

The average pressure on the upper half is less than the average pressure at the 

Figure 5.10: A flapped airfoil with a slot to prevent the separation of the boundary layer 

from the upper surface and to increase the lift coefficient. 
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lower half because of the Bernoulli effect, and thus there is a net upward force 

(lift) acting on the cylinder.  

 

 

     

 

 

 

 

 

 

Example 5.3: 

A commercial airplane has a total mass of 70,000 kg and a wing planform area of 

150 m
2
 (see Figure 5.12). The plane has a cruising speed of 558 km/h and a 

cruising altitude of 12,000 m, where the air density is 0.312 kg/m
3
. The plane has 

double-slotted flaps for use during takeoff and landing, but it cruises with all flaps 

retracted. Assuming the lift and the drag characteristics of the wings can be 

approximated by NACA 23012, determine (a) the minimum safe speed for takeoff 

and landing with and without extending the flaps, (b) the angle of attack to cruise 

steadily at the cruising altitude, and (c) the power that needs to be supplied to 

provide enough thrust to overcome wing drag. The maximum lift coefficients 

CL,max of the wings are 3.48 and 1.52 with and without flaps, respectively 

Solution: (a) The weight and cruising speed of the airplane are 

 

 

 

 

Figure 5.11: Generation of lift on a rotating circular cylinder for the case of “idealized” 

potential flow (the actual flow involves flow separation in the wake region. 
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The minimum velocities corresponding to the stall conditions without and with 

flaps, respectively, are obtained from Equation 5.9, 

        

 

 

 

 

Then the “safe” minimum velocities to avoid the stall region are obtained by 

multiplying the values above by 1.2: 

     

 

since 1 m/s = 3.6 km/h. Note that the use of flaps allows the plane to take off and 

land at considerably lower velocities, and thus on a shorter runway. 

 

(b) When an aircraft is cruising steadily at a constant altitude, the lift must be equal 

to the weight of the aircraft, FL = W. Then the lift coefficient is determined to be 
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For the case with no flaps, the angle of attack corresponding to this value of CL is 

determined from following Figure to be α ≈10°. 

(c) When the aircraft is cruising steadily at a constant altitude, the net force acting 

on the aircraft is zero, and thus thrust provided by the engines must be equal to the 

drag force. The drag coefficient corresponding to the cruising lift coefficient of 

1.22 is determined from the following Figure to be CD ≈ 0.03 for the case with no 

flaps. Then the drag force acting on the wings becomes 

       

 

 

Noting that power is force times velocity (distance per unit time), the power 

required to overcome this drag is equal to the thrust times the cruising velocity: 

 

 

 

Therefore, the engines must supply 2620 kW of power to overcome the drag on the 

wings during cruising. For a propulsion efficiency of 30 percent (i.e., 30 percent of 

the energy of the fuel is utilized to propel the aircraft), the plane requires energy 

input at a rate of 8733 kJ/s. 
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Example 5.4: 

A tennis ball with a mass of 0.125 lbm and a diameter of 2.52 in is hit at 45 mi/h 

with a backspin of 4800 rpm (see Figure below). Determine if the ball will fall or 

rise under the combined effect of gravity and lift due to spinning shortly after 

being hit in air at 1 atm and 80°F. 

Solution: 

The density and kinematic viscosity of air at 1 

atm and 80°F are ρ = 0.07350 lbm/ft
3
 and ν = 

1.697×10
-4

 ft
2
/s. 

The lift can be determined from 

where A is the frontal area of the ball, which is A = πD
2
/4. The translational and 

angular velocities of the ball are 

Figure Example 5.3: Effect of flaps on the lift and drag coefficients of an airfoil. 
From Abbott and von Doenhoff, for NACA 23012 (1959). 
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From Figure below, the lift coefficient corresponding to this value is CL= 0.21. 

Then the lift force acting on the ball is 

     

 

 

The weight of the ball is 

    

 

which is more than the lift. Therefore, the ball will drop under the combined effect 

of gravity and lift due to spinning with a net force of 0.125 - 0.036 = 0.089 lbf. 
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Figure Example 5.4: The variation of lift and drag coefficients of a smooth sphere with 

the nondimensional rate of rotation for Re = VD/ν = 6 × 10
4
. 
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Chapter Four 

Flow Rate and Velocity Measurement 
 

4.1. Introduction 

A major application area of fluid mechanics is the determination of the flow rate of 

fluids, and numerous devices have been developed over the years for the purpose 

of flow metering. Flowmeters range widely in their level of sophistication, size, 

cost, accuracy, versatility, capacity, pressure drop, and the operating principle. We 

give an overview of the meters commonly used to measure the flow rate of liquids 

and gases flowing through pipes or ducts. We limit our consideration to 

incompressible flow.  

Some flowmeters measure the flow rate directly by discharging and recharging a 

measuring chamber of known volume continuously and keeping track of the 

number of discharges per unit time. But most flowmeters measure the flow rate 

indirectly-they measure the average velocity V or a quantity that is related to 

average velocity such as pressure and drag, and determine the volume flow rate  ̇ 

from 

 ̇                                                                                                (4.1) 

where Ac is the cross-sectional area of flow. Therefore, measuring the flow rate is 

usually done by measuring flow velocity, and most flowmeters are simply 

velocimeters used for the purpose of metering flow.  

The velocity in a pipe varies from zero at the wall to a maximum at the center, and 

it is important to keep this in mind when taking velocity measurements. For 

laminar flow, for example, the average velocity is half the centerline velocity. But 

this is not the case in turbulent flow, and it may be necessary to take the weighted 

average of several local velocity measurements to determine the average velocity. 
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4.2. Pitot and Pitot-Static Probes 

Pitot probes (also called Pitot tubes) and Pitot-static probes, named after the 

French engineer Henri de Pitot (1695–1771), are widely used for flow rate 

measurement. A Pitot probe is just a tube with a pressure tap at the stagnation point 

that measures stagnation pressure, while a Pitot-static probe has both a stagnation 

pressure tap and several circumferential static pressure taps and it measures both 

stagnation and static pressures (Figures 4.1 and 4.2). Pitot was the first person to 

measure velocity with the upstream pointed tube, while French engineer Henry 

Darcy (1803–1858) developed most of the features of the instruments we use 

today, including the use of small openings and the placement of the static tube on 

the same assembly. Therefore, it is more appropriate to call the Pitot-static probes 

Pitot–Darcy probes. 

 

 

 

 

 

 

 

 

 

The Pitot-static probe measures local velocity by measuring the pressure difference 

in conjunction with the Bernoulli equation. It consists of a slender double-tube 

aligned with the flow and connected to a differential pressure meter. The inner tube 

is fully open to flow at the nose, and thus it measures the stagnation pressure at that 

location (point 1). The outer tube is sealed at the nose, but it has holes on the side 

of the outer wall (point 2) and thus it measures the static pressure. For 

Figure 4.1: (a) A Pitot probe measures stagnation pressure at the nose of the probe, while (b) a 

Pitot-static probe measures both stagnation pressure and static pressure, from which the flow speed 

can be calculated. 
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incompressible flow with sufficiently high velocities (so that the frictional effects 

between points 1 and 2 are negligible), the Bernoulli equation is applicable and can 

be expressed as 

  

                                                  (4.2) 

 

Noting that z1 ≈ z2 since the static 

pressure holes of the Pitot-static probe 

are arranged circumferentially around 

the tube and V1 = 0 because of the 

stagnation conditions, the flow 

velocity V = V2 becomes 

 

Pitot formula: 

 

                                             (4.3) 

 

 

which is known as the Pitot formula. If the velocity is measured at a location where 

the local velocity is equal to the average flow velocity, the volume flow rate can be 

determined from ( ̇       ). 

 

 

 

 

 

 

Figure 4.2: Measuring flow velocity with a Pitotstatic probe. 
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4.3. Obstruction Flowmeters: Orifice, Venturi, and Nozzle Meters 

Consider incompressible steady flow of a fluid in a horizontal pipe of diameter D 

that is constricted to a flow area of diameter d, as shown in Figure 4.3. The mass 

balance and the Bernoulli equations between a location before the constriction 

(point ①) and the location where constriction occurs (point ②) can be written as, 

 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mass balance:                                                                                             (4.4) 

 

Bernoulli equation (z1 = z2):                                                                         (4.5) 

 

Combining Equations 4.4 and 4.5 and solving for velocity V2 gives 

 

Obstruction (with no loss):                                                                          (4.6) 

 

where β = d/D is the diameter ratio. Once V2 is known, the flow rate can be 

determined from  ̇ = A2V2 = (π d
2
/4)V2. 

This simple analysis shows that the flow rate through a pipe can be determined by 

constricting the flow and measuring the decrease in pressure due to the increase in 

Figure 4.3: Flow through a constriction in a pipe. 
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velocity at the constriction site. Noting that the pressure drop between two points 

along the flow can be measured easily by a differential pressure transducer or 

manometer, it appears that a simple flow rate measurement device can be built by 

obstructing the flow. Flowmeters based on this principle are called obstruction 

flowmeters and are widely used to measure flow rates of gases and liquids. 

Both losses can be accounted for by incorporating a correction factor called the 

discharge coefficient Cd whose value (which is less than 1) is determined 

experimentally. Then the flow rate for obstruction flowmeters can be expressed as, 

 

Obstruction flowmeters:                                                                    (4.7) 

 

where Ao = A2 = πd
2
/4 is the cross-sectional area of the hole and β = d/D is the 

ratio of hole diameter to pipe diameter. The value of Cd depends on both β and the 

Reynolds number Re= V1D/ν, and charts and curve-fit correlations for Cd are 

available for various types of obstruction meters. 

Of the numerous types of obstruction meters available, those most widely used are 

orifice meters, flow nozzles, and Venturi meters (Figure 4.4). The experimentally 

determined data for discharge coefficients are expressed as (Miller, 1997) 

 

Orifice meters:                                                                                            (4.8) 

 

Nozzle meters:                                                                                            (4.9) 

 

These relations are valid for 0.25 < β < 0.75 and 10
4
 < Re < 10

7
. Precise values of 

Cd depend on the particular design of the obstruction, and thus the manufacturer’s 

data should be consulted when available. For flows with high Reynolds numbers 
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(Re > 30,000), the value of Cd can be taken to be 0.96 for flow nozzles and 0.61 for 

orifices.  

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 4.1: 

The flow rate of methanol at 20°C (ρ 788.4 kg/m
3
 and μ = 5.857×10

-4
 kg/ms) 

through a 4 cm diameter pipe is to be measured with a 3 cm diameter orifice meter 

equipped with a mercury manometer across the orifice place, as shown in Figure 

4.5. If the differential height of the manometer is read to be 11 cm, determine the 

flow rate of methanol through the pipe and the average flow velocity. The 

discharge coefficient of the orifice meter is Cd = 0.61 and take the density of 

mercury to be 13600 kg/m
3
. 

Solution: The diameter ratio and the throat area of the orifice are 

     

 

 

Figure 4.4: Common types of obstruction meters. 

(a) Orifice meter 

(c) Venturi meter 

(b) Flow nozzle 
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The pressure drop across the orifice plate 

can be expressed as 

 

Then the flow rate relation for obstruction 

meters becomes 

    

 

     

 

 

     

 

Substituting, the flow rate is determined to 

be 

      

 

 

which is equivalent to 3.09 L/s. The average flow velocity in the pipe is 

determined by dividing the flow rate by the cross-sectional area of the pipe, 

      

 

 

Example 4.2: 

A vertical Venturi meter equipped with a differential pressure gage shown in 

Figure 4.6 is used to measure the flow rate of liquid propane at 10°C (ρ= 514.7 

kg/m
3
) through an 8 cm diameter vertical pipe. For a discharge coefficient of 0.98, 

determine the volume flow rate of propane through the pipe. 

Figure 4.5: Schematic for the orifice meter 

considered in Example 4.1. 
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Solution: 

 

The diameter ratio and the throat area of the 

meter are 

      

 

 

Noting that ΔP = 7 kPa = 7000 N/m
2
, the 

flow rate becomes 

     

 

 

      

 

 

which is equivalent to 10.9 L/s. Also, the average flow velocity in the pipe is 

     

 

 

Example 4.3: 

The flow rate of water at 20°C (ρ = 998 kg/m
3
 and μ = 1.002×10

-3
 kg/ms) through a 

4 cm diameter pipe is measured with a 2 cm diameter nozzle meter equipped with 

an inverted air–water manometer as shown in Figure 4.7. If the manometer 

indicates a differential water height of 32 cm, determine the volume flow rate of 

water and the head loss caused by the nozzle meter. The percent pressure loss for 

nozzle meters is given for β = 0.5 to be 62%. 

Figure 4.6: Schematic for the 

vertical Venturi meter 

considered in Example 4.2. 

∆P= 7 kPa 
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Solution: 

The diameter ratio and the throat area of the 

meter are 

      

 

 

the flow rate becomes 

     

      

 

        

 

       

 

 

which is equivalent to 0.781 L/s. The average flow velocity in the pipe is 

     

 

 

The percent pressure (or head) loss for nozzle meters is given for β = 0.5 to be 

62%. Therefore, hL = (Permanent loss fraction), (Total head loss) = 0.62 (0.32m) = 

0.20 mH2O. The head loss between the two measurement sections can be 

determined from the energy equation, which simplifies to (z1 =z2) 

     

 

 

Figure 4.7: Schematic for the air–water 

manometer considered in Example 4.3. 
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Chapter One 

Turbulent Flow in Pipes 

 

 
1.1. TURBULENT FLOW IN PIPES 

Most flows encountered in engineering practice are turbulent, and thus it is 

important to understand how turbulence affects wall shear stress. However, 

turbulent flow is a complex mechanism dominated by fluctuations, and despite 

tremendous amounts of work done in this area by researchers, the theory of 

turbulent flow remains largely undeveloped. Therefore, we must rely on 

experiments and the empirical or semi-empirical correlations developed for various 

situations. 

Turbulent flow is characterized by random and a rapid fluctuation of swirling 

regions of fluid, called eddies, throughout the flow. These fluctuations provide an 

additional mechanism for momentum and energy transfer. In laminar flow, fluid 

particles flow in an orderly manner along pathlines, and momentum and energy are 

transferred across streamlines by molecular diffusion. In turbulent flow, the 

swirling eddies transport mass, momentum, and energy to other regions of flow 

much more rapidly than molecular diffusion, greatly enhancing mass, momentum, 

and heat transfer. As a result, turbulent flow is associated with much higher values 

of friction, heat transfer, and mass transfer coefficients (see Figure 1.1). 

 

 

 

 

 

 

Figure 1.1: The intense mixing in 

turbulent flow brings fluid particles at 

different momentums into close contact 

and thus enhances momentum transfer. 
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Even when the average flow is steady, the eddy motion in turbulent flow causes 

significant fluctuations in the values of velocity, temperature, pressure, and even 

density (in compressible flow). Figure 1.2 shows the variation of the instantaneous 

velocity component u with time at a specified location, as can be measured with a 

hot-wire anemometer probe or other sensitive device. We observe that the 

instantaneous values of the velocity fluctuate about an average value, which 

suggests that the velocity can be expressed as the sum of an average value  ̅ and a 

fluctuating component   , 

   ̅                                                     …….1.1 

 

 

 

 

 

 

 

 

 

 

1.2. Turbulent Shear Stress 

 

It is convenient to think of the turbulent shear stress as consisting of two parts: the 

laminar component, which accounts for the friction between layers in the flow 

direction (expressed as        
  ̅

  
), and the turbulent component, which 

accounts for the friction between the fluctuating fluid particles and the fluid body 

Figure 1.2: Fluctuations of the velocity component u with time at a specified location in 

turbulent flow. 
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(denoted as      ) and is related to the fluctuation components of velocity). Then 

the total shear stress in turbulent flow can be expressed as 

                                      ……1.2 

The typical average velocity profile and relative magnitudes of laminar and 

turbulent components of shear stress for turbulent flow in a pipe are given in 

Figure 3.1. 

 

 

 

 

 

 

 

 

In many of the simpler turbulence models, turbulent shear stress is expressed in an 

analogous manner as suggested by the French mathematician Joseph Boussinesq 

(1842–1929) in 1877 as 

         
  ̅

  
                or                    

  ̅

  
                ……1.3 

where μt is the eddy viscosity or turbulent viscosity, which accounts for momentum 

transport by turbulent eddies. Then the total shear stress can be expressed 

conveniently as 

                   
  ̅

  
   

  ̅

  
       

  ̅

  
              ……1.4 

              
  ̅

  
                                                               ……1.5 

where    
  

 ⁄  is the kinematic eddy viscosity or kinematic turbulent viscosity 

(also called the eddy diffusivity of momentum). The concept of eddy viscosity is 

Figure 1.3: The velocity profile and the variation of shear stress with radial distance for 

turbulent flow in a pipe. 
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very appealing, but it is of no practical use unless its value can be determined. In 

other words, eddy viscosity must be modeled as a function of the average flow 

variables; we call this eddy viscosity closure. For example, in the early 1900s, the 

German engineer L. Prandtl introduced the concept of mixing length (lm), which is 

related to the average size of the eddies that are primarily responsible for mixing, 

and expressed the turbulent shear stress as 

         
  ̅

  
    

 (
  ̅

  
)
 
                                             ………1.6 

 

1.3. Turbulent Velocity Profile 

 

Unlike laminar flow, the expressions for the velocity profile in a turbulent flow are 

based on both analysis and measurements, and thus they are semi-empirical in 

nature with constants determined from experimental data. Consider fully-

developed turbulent flow in a pipe, and let u denote the time-averaged velocity in 

the axial direction. 

Typical velocity profiles for fully developed laminar and turbulent flows are given 

in Figure 1.4. Note that the velocity profile is parabolic in laminar flow but is much 

fuller in turbulent flow, with a sharp drop near the pipe wall. Turbulent flow along 

a wall can be considered to consist of four regions, characterized by the distance 

from the wall. The very thin layer next to the wall where viscous effects are 

dominant is the viscous (or laminar or linear or wall) sublayer. The velocity 

profile in this layer is very nearly linear, and the flow is streamlined. Next to the 

viscous sublayer is the buffer layer, in which turbulent effects are becoming 

significant, but the flow is still dominated by viscous effects. Above the buffer 

layer is the overlap (or transition) layer, also called the inertial sublayer, in which 

the turbulent effects are much more significant, but still not dominant. Above that 
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is the outer (or turbulent) layer in the remaining part of the flow in which 

turbulent effects dominate over molecular diffusion (viscous) effects. 

 

 

 

 

 

 

 

 

 

 

Then the velocity gradient in the viscous sublayer remains nearly constant at 

du/dy= u/y, and the wall shear stress can be expressed as 

                                                                                        …..1.7 

 

where y is the distance from the wall (note that y= R - r for a circular pipe). The 

quantity τw/ρ is frequently encountered in the analysis of turbulent velocity 

profiles. The square root of τw/ρ has the dimensions of velocity, and thus it is 

convenient to view it as a fictitious velocity called the friction velocity expressed 

as    √
  

 ⁄ . Substituting this into Eq. 1.7, the velocity profile in the viscous 

sublayer can be expressed in dimensionless form as 

Viscous sublayer:                
 

  
 

   

 
  

Figure 1.4: The velocity profile in fully developed pipe flow is parabolic in laminar 

flow, but much fuller in turbulent flow. 
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This equation is known as the law of the wall, and it is found to satisfactorily 

correlate with experimental data for smooth surfaces for 0 ≤ 
   

 
 ≤5. Therefore, the 

thickness of the viscous sublayer is roughly 

Thickness of viscous sublayer:          

 

where uϭ is the flow velocity at the edge of the viscous sublayer, which is closely 

related to the average velocity in a pipe. The quantity 
 

  
 has dimensions of length 

and is called the viscous length; it is used to nondimensionalize the distance y from 

the surface. In boundary layer analysis, it is convenient to work with 

nondimensionalized distance and nondimensionalized velocity defined as 

Nondimensionalized variables:      

 

Note that the friction velocity u* is used to nondimensionalize both y and u, and y
+
 

resembles the Reynolds number expression. 

Dimensional analysis indicates and the experiments confirm that the velocity in the 

overlap layer is proportional to the logarithm of distance, and the velocity profile 

can be expressed as 

The logarithmic law:                                             ……1.8 

 

where k and B are constants whose values are determined experimentally to be 

about 0.40 and 5.0, respectively. Equation 1.8 is known as the logarithmic law. 

Substituting the values of the constants, the velocity profile is determined to be 

 

Overlap layer:    
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A good approximation for the outer turbulent layer of pipe flow can be obtained by 

evaluating the constant B in Eq. 1.8 from the requirement that maximum velocity 

in a pipe occurs at the centerline where r= 0. Solving for B from Eq. 1.8 by setting 

y = R & r = R and u = umax, and substituting it back into Eq. 1.8 together with k = 

0.4 gives 

Outer turbulent layer:      

 

The deviation of velocity from the centerline value umax - u is called the velocity 

defect, and the above equation is called the velocity defect law. 

 

1.4. The Moody Chart 

The friction factor in fully developed turbulent pipe flow depends on the Reynolds 

number and the relative roughness (ε/D), which is the ratio of the mean height of 

roughness of the pipe, to the pipe diameter. The functional form of this dependence 

cannot be obtained from a theoretical analysis, and all available results are 

obtained from painstaking experiments using artificially roughened surfaces 

(usually by gluing sand grains of a known size on the inner surfaces of the pipes). 

Most such experiments were conducted by Prandtl’s student J. Nikuradse in 1933, 

followed by the works of others. The friction factor was calculated from the 

measurements of the flow rate and the pressure drop. 

The experimental results obtained are presented in tabular, graphical, and 

functional forms obtained by curve-fitting experimental data. In 1939, Cyril F. 

Colebrook (1910–1997) combined the available data for transition and turbulent 

flow in smooth as well as rough pipes into the following implicit relation known as 

the Colebrook equation: 

 

Turbulent flow:                                                                        …..1.9 
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We note that the logarithm in Eq. 1.9 is a base 10 rather than a natural logarithm. 

In 1942, the American engineer Hunter Rouse (1906–1996) verified Colebrook’s 

equation and produced a graphical plot of f as a function of Re and the product 

  √ . He also presented the laminar flow relation and a table of commercial pipe 

roughness. Two years later, Lewis F. Moody (1880–1953) redrew Rouse’s diagram 

into the form commonly used today. The now famous Moody chart is given in the 

appendix as Figure 1.5. It presents the Darcy friction factor for pipe flow as a 

function of the Reynolds number and ε/D over a wide range. It is probably one of 

the most widely accepted and used charts in engineering. Although it is developed 

for circular pipes, it can also be used for noncircular pipes by replacing the 

diameter by the hydraulic diameter. An approximate explicit relation for f was 

given by S. E. Haaland in 1983 as 

 

                                                                              …….. 1.10 

 

The results obtained from this relation are within 2% of those obtained from the 

Colebrook equation. Equivalent roughness values for some commercial pipes are 

given in Table 1.1 as well as on the Moody chart. 

 

 

 

 

 

 

 

 

 

Table 1.1: Equivalent roughness values 

for new commercial pipes. 
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We make the following observations from the Moody chart: 

 For laminar flow, the friction factor decreases with increasing Reynolds 

number, and it is independent of surface roughness. 

 The friction factor is a minimum for a smooth pipe (but still not zero 

because of the no-slip condition) and increases with roughness. The 

Colebrook equation in this case (ε = 0) reduces to the Prandtl equation 

expressed as    

 The transition region from the laminar to turbulent regime (2300 < Re < 

4000) is indicated by the shaded area in the Moody chart. The flow in this 

region may be laminar or turbulent, depending on flow disturbances, or it 

may alternate between laminar and turbulent, and thus the friction factor 

may also alternate between the values for laminar and turbulent flow. The 

data in this range are the least reliable. At small relative roughnesses, the 

friction factor increases in the transition region and approaches the value for 

smooth pipes. 

 At very large Reynolds numbers (to the right of the dashed line on the chart) 

the friction factor curves corresponding to specified relative roughness 

curves are nearly horizontal, and thus the friction factors are independent of 

the Reynolds number. The flow in that region is called fully rough turbulent 

flow or just fully rough flow because the thickness of the viscous sublayer 

decreases with increasing Reynolds number, and it becomes so thin that it is 

negligibly small compared to the surface roughness height. The viscous 

effects in this case are produced in the main flow primarily by the protruding 

roughness elements, and the contribution of the laminar sublayer is 

negligible. The Colebrook equation in the fully rough zone (Re → ∞) 

reduces to the von Kármán equation expressed as which is explicit in f.  
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Figure 1.5: The Moody chart for the friction factor for fully developed flow. 

Figure 1.6: At very large Reynolds numbers, the friction factor curves on the Moody chart are 

nearly horizontal, and thus the friction factors are independent of the Reynolds number. 
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1.5. Types of Fluid Flow Problems 

In the design and analysis of piping systems that involve the use of the Moody 

chart (or the Colebrook equation), we usually encounter three types of problems 

(the fluid and the roughness of the pipe are assumed to be specified in all cases). 

1. Determining the pressure drop (or head loss) when the pipe length and 

diameter are given for a specified flow rate (or velocity) 

2. Determining the flow rate when the pipe length and diameter are given for a 

specified pressure drop (or head loss) 

3. Determining the pipe diameter when the pipe length and flow rate are given for 

a specified pressure drop (or head loss) 

Problems of the first type are straightforward and can be solved directly by using 

the Moody chart. Problems of the second type and third type are commonly 

encountered in engineering design (in the selection of pipe diameter, for example, 

that minimizes the sum of the construction and pumping costs), but the use of the 

Moody chart with such problems requires an iterative approach unless an equation 

solver is used. 

In problems of the second type, the diameter is given but the flow rate is unknown. 

A good guess for the friction factor in that case is obtained from the completely 

turbulent flow region for the given roughness. This is true for large Reynolds 

numbers, which is often the case in practice. Once the flow rate is obtained, the 

friction factor can be corrected using the Moody chart or the Colebrook equation, 

and the process is repeated until the solution converges. (Typically only a few 

iterations are required for convergence to three or four digits of precision.) 

In problems of the third type, the diameter is not known and thus the Reynolds 

number and the relative roughness cannot be calculated. Therefore, we start 

calculations by assuming a pipe diameter. The pressure drop calculated for the 

assumed diameter is then compared to the specified pressure drop, and calculations 

are repeated with another pipe diameter in an iterative fashion until convergence. 
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To avoid tedious iterations in head loss, flow rate, and diameter calculations, 

Swamee and Jain proposed the following explicit relations in 1976 that are 

accurate to within 2% of the Moody chart:     

 

 

 

 

 

 

 

Examples: 

Example 1: 

Water (ρ= 62.36 lbm/ft
3
 and μ= 7.536×10

-4
 lbm/ft·s) is flowing steadily in a 2 in 

diameter horizontal pipe made of stainless steel at a rate of 0.2 ft
3
/s (see Figure 

below). Determine the pressure drop, the head loss, and the required pumping 

power input for flow over a 200 ft long section of the pipe.    

Solution: We recognize this as a problem of 

the first type, since flow rate, pipe length, and 

pipe diameter are known. First we calculate 

the average velocity and the Reynolds number 

to determine the flow regime:      

 

 

 

 

which is greater than 4000. Therefore, the flow is turbulent. The relative roughness 

of the pipe is calculated using Table1.1.          
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The friction factor corresponding to this relative roughness and the Reynolds 

number can simply be determined from the Moody chart. To avoid any reading 

error, we determine f from the Colebrook equation:    

 

    

Using an equation solver or an iterative scheme, the friction factor is determined to 

be f = 0.0174. Then the pressure drop (which is equivalent to pressure loss in this 

case), head loss, and the required power input become 

 

 

 

 

 

      

 

 

Example 2: 

Heated air at 35°C is to be transported in a 150 m long circular plastic duct at a rate 

of 0.35 m
3
/s (see Figure below). If the head loss in the pipe is not to exceed 20 m, 

determine the minimum diameter of the duct. 

Solution: 

The density, dynamic viscosity and kinematic viscosity of air at 35°C are ρ = 1.145 

kg/m
3
, μ= 1.895×10

-5
 kg/m·s, and  = 1.655×10

-5
 m

2
/s. 

the friction factor, and the head loss 

relations can be expressed as (D is in m, V 

is in m/s, and Re and f are dimensionless) 
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The roughness is approximately zero for a plastic pipe (Table 1.1). Therefore, this 

is a set of four equations in four unknowns, and solving them with an equation 

solver such as EES gives 

 

Therefore, the diameter of the duct should be more than 26.7 cm if the head loss is 

not to exceed 20 m. Note that Re > 4000, and thus the turbulent flow assumption is 

verified. 

The diameter can also be determined directly from the third Swamee–Jain formula 

to be 

 

 

 

 

 

Example: 

Liquid ammonia at -20°C is flowing through a 30 m long section of a 5 mm 

diameter copper tube at a rate of 0.15 kg/s. Determine the pressure drop, the head 

loss, and the pumping power required to overcome the frictional losses in the tube. 

Solution: 
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The density and dynamic viscosity of liquid ammonia at -20°C are ρ= 665.1 kg/m
3
 

and μ= 2.361×10
-4

 kg/m.s. The roughness of copper tubing is 1.5×10
-6

 m. 

First we calculate the average velocity and the Reynolds number to determine the 

flow regime: 

 

     

 

 

which is greater than Re > 4000. Therefore, the flow is turbulent. The relative 

roughness of the pipe is 

 

    

The friction factor can be determined from the Moody chart, but to avoid the 

reading error, we determine it from the Colebrook equation using an equation 

solver (or an iterative scheme),     

 

 

It gives f = 0.01819. Then the pressure drop, the head loss, and the useful pumping 

power required become 
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Chapter Three 

Piping Networks and Pump Selection 
 

3.1. Introduction 

Most piping systems encountered in practice such as the water distribution systems 

in cities or commercial or residential establishments involve numerous parallel and 

series connections as well as several sources (supply of fluid into the system) and 

loads (discharges of fluid from the system) (see Figure 3-1). A piping project may 

involve the design of a new system or the expansion of an existing system. The 

engineering objective in such projects is to design a piping system that will deliver 

the specified flow rates at specified pressures reliably at minimum total (initial plus 

operating and maintenance) cost. Once the layout of the system is prepared, the 

determination of the pipe diameters and the pressures throughout the system, while 

remaining within the budget constraints, typically requires solving the system 

repeatedly until the optimal solution is reached. Computer modeling and analysis 

of such systems make this tedious task a simple chore. 

 

 

 

 

 

 

 

 

 
 
 

 

Figure 3.1: A piping network in an industrial facility. 
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Piping systems typically involve several pipes connected to each other in series 

and/or in parallel, as shown in Figure 3.2. When the pipes are connected in series, 

the flow rate through the entire system remains constant regardless of the 

diameters of the individual pipes in the system. 

 

 

 

 

 

 

 

For a pipe that branches out into two (or more) parallel pipes and then rejoins at a 

junction downstream, the total flow rate is the sum of the flow rates in the 

individual pipes, as shown in Figure 3.3. The pressure drop (or head loss) in each 

individual pipe connected in parallel must be the same since ∆P = PA - PB and the 

junction pressures PA and PB are the same for all the individual pipes. For a system 

of two parallel pipes 1 and 2 between junctions A and B with negligible minor 

losses, this can be expressed as 

                                                                                                           (3.1) 

 

 

 

 

 

 

 

 

Figure 3.2: For pipes in series, the flow rate is the same in each pipe, and the total 

head loss is the sum of the head losses in individual pipes. 

Figure 3.3: For pipes in parallel, the head loss is the same in each pipe, and the total 

flow rate is the sum of the flow rates in individual pipes. 
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Then the ratio of the average velocities and the flow rates in the two parallel pipes 

become 

                                                                                                               (3.2) 

 

Therefore, the relative flow rates in parallel pipes are established from the 

requirement that the head loss in each pipe be the same. This result can be 

extended to any number of pipes connected in parallel. 

The analysis of piping networks, no matter how complex they are, is based on two 

simple principles:  

1. Conservation of mass throughout the system must be satisfied. This is done by 

requiring the total flow into a junction to be equal to the total flow out of the 

junction for all junctions in the system. Also, the flow rate must remain constant in 

pipes connected in series regardless of the changes in diameters. 

2. Pressure drop (and thus head loss) between two junctions must be the same for 

all paths between the two junctions. This is because pressure is a point function 

and it cannot have two values at a specified point. In practice this rule is used by 

requiring that the algebraic sum of head losses in a loop (for all loops) be equal to 

zero. (A head loss is taken to be positive for flow in the clockwise direction and 

negative for flow in the counterclockwise direction.) 

3.2. Piping Systems with Pumps and Turbines 

When a piping system involves a pump and/or turbine, the steady-flow energy 

equation (Bernoulli equation) on a unit-mass basis can be expressed as 

 

                                                                                                               (3.3) 

It can also be expressed in terms of heads as 

 

                                                                                                      (3.4) 
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where hpump,u = Wpump,u /g is the useful pump head delivered to the fluid, hturbine,e = 

Wpump,e /g is the turbine head extracted from the fluid, α is the kinetic energy 

correction factor whose value is nearly 1 for most (turbulent) flows encountered in 

practice, and hL is the total head loss in piping (including the minor losses if they 

are significant) between points 1 and 2. The pump head is zero if the piping system 

does not involve a pump or a fan, the turbine head is zero if the system does not 

involve a turbine, and both are zero if the system does not involve any mechanical 

work-producing or work-consuming devices. 

Many practical piping systems involve a pump to move a fluid from one reservoir 

to another. Taking points 1 and 2 to be at the free surfaces of the reservoirs, the 

energy equation in this case reduces for the useful pump head required to (Figure 

3.4). Since the velocities at free surfaces are negligible and the pressures are at 

atmospheric pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

   

                                                                                          (3.5) 

Figure 3.4: When a pump moves a fluid from one reservoir to another, the useful 

pump head requirement is equal to the elevation difference between the two 

reservoirs plus the head loss. 
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A similar argument can be given for the turbine head for a hydroelectric power 

plant by replacing hpump,u in Eq. 3.5 by -hturbine,e. 

 

3.3. The efficiency of the pump–motor combination 

Once the useful pump head is known, the mechanical power that needs to be 

delivered by the pump to the fluid and the electric power consumed by the motor 

of the pump for a specified flow rate are determined from 

                                                                                                   (3.6) 

 

where ηpump–motor is the efficiency of the pump–motor combination, which is the 

product of the pump and the motor efficiencies. The pump–motor efficiency is 

defined as the ratio of the net mechanical energy delivered to the fluid by the pump 

to the electric energy consumed by the motor of the pump, and it usually ranges 

between 50 and 85 percent. 

The head loss of a piping system increases (usually quadratically) with the flow 

rate. A plot of required useful pump head hpump,u as a function of flow rate is called 

the system (or demand) curve. The head produced by a pump is not a constant 

either. Both the pump head and the pump efficiency vary with the flow rate, and 

pump manufacturers supply this variation in tabular or graphical form, as shown in 

Figure 3.5. These experimentally determined hpump,u and hpump,u versus V.curves are 

called characteristic (or supply or performance) curves. Note that the flow rate 

of a pump increases as the required head decreases. The intersection point of the 

pump head curve with the vertical axis typically represents the maximum head the 

pump can provide, while the intersection point with the horizontal axis indicates 

the maximum flow rate (called the free delivery) that the pump can supply. 

The efficiency of a pump is sufficiently high for a certain range of head and flow 

rate combination. Therefore, a pump that can supply the required head and flow 
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rate is not necessarily a good choice for a piping system unless the efficiency of the 

pump at those conditions is sufficiently high. The pump installed in a piping 

system will operate at the point where the system curve and the characteristic 

curve intersect. This point of intersection is called the operating point, as shown 

in Figure 3.5. The useful head produced by the pump at this point matches the head 

requirements of the system at that flow rate. Also, the efficiency of the pump 

during operation is the value corresponding to that flow rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Characteristic pump curves for centrifugal pumps, the system curve for a 

piping system, and the operating point. 
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Example 3.1: 

Water at 20°C is to be pumped from a reservoir (zA = 5 m) to another reservoir at a 

higher elevation (zB = 13 m) through two 36-m-long pipes connected in parallel, as 

shown in Figure 3.6. The pipes are made of commercial steel, and the diameters of 

the two pipes are 4 and 8 cm. Water is to be pumped by a 70% efficient motor–

pump combination that draws 8 kW of electric power during operation. The minor 

losses and the head loss in pipes that connect the parallel pipes to the two 

reservoirs are considered to be negligible. Determine the total flow rate between 

the reservoirs and the flow rate through each of the parallel pipes. 

Properties The density and dynamic viscosity of water at 20°C are ρ = 998 kg/m
3
 

and μ = 1.002×10
-3

 kg/m.s. The roughness of commercial steel pipe is ε = 

0.000045 m. 

 

 

 

 

 

 

 

 

 

 

The useful head supplied by the pump to the fluid is determined from 

 

 

We choose points A and B at the free surfaces of the two reservoirs. Noting that 

the fluid at both points is open to the atmosphere (and thus PA = PB = Patm) and that 

Figure 3.6: The piping system discussed in Example 3.1. 
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the fluid velocities at both points are zero (VA = VB = 0), the energy equation for a 

control volume between these two points simplifies to 

 

 

 

 

 

 

 

We designate the 4-cm-diameter pipe by 1 and the 8-cm-diameter pipe by 2. The 

average velocity, the Reynolds number, the friction factor, and the head loss in 

each pipe are expressed as 
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Note that Re > 4000 for both pipes, and thus the assumption of turbulent flow is 

verified. 

Example 3.2: 

Water at 10°C flows from a large reservoir to a smaller one through a 5 cm 

diameter cast iron piping system, as shown in Figure 3.7. Determine the elevation 

z1 for a flow rate of 6 L/s. 

        

 

 

 

 

 

 

 

Figure 3.7: The piping system discussed in Example 3.2. 
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Properties The density and dynamic viscosity of water at 10°C are ρ = 999.7 

kg/m
3
 and μ = 1.307×10

-3
 kg/m.s. The roughness of cast iron pipe is ε = 0.00026m. 

Solution: 

The piping system involves 89 m of piping, a sharp-edged entrance (KL = 0.5), two 

standard flanged elbows (KL = 0.3 each), a fully open gate valve (KL = 0.2), and a 

submerged exit (KL = 1.06). We choose points 1 and 2 at the free surfaces of the 

two reservoirs. Noting that the fluid at both points is open to the atmosphere (and 

thus P1 = P2 = Patm) and that the fluid velocities at both points are zero (V1 = V2 = 

0), the energy equation for a control volume between these two points simplifies to 

       

 

 

 

 

since the diameter of the piping system is constant. The average velocity in the 

pipe and the Reynolds number are 

  

The flow is turbulent since Re > 4000. Noting that e/D = 0.00026/0.05 = 0.0052, 

the friction factor can be determined from the Colebrook equation (or the Moody 

chart), 
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It gives f = 0.0315. The sum of the loss coefficients is 

     

 

 

Then the total head loss and the elevation of the source become 

    

 

 

 

Therefore, the free surface of the first reservoir must be 31.9 m above the ground 

level to ensure water flow between the two reservoirs at the specified rate. 

Example 3.3: 

The bathroom plumbing of a building consists of 1.5-cm-diameter copper pipes 

with threaded connectors, as shown in Figure 3.8. (a) If the gage pressure at the 

inlet of the system is 200 kPa during a shower and the toilet reservoir is full (no 

flow in that branch), determine the flow rate of water through the shower head. (b) 

Determine the effect of flushing of the toilet on the flow rate through the shower 

head. Take the loss coefficients of the shower head and the reservoir to be 12 and 

14, respectively. 
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Properties The density and dynamic viscosity of water at 20°C are ρ = 998 kg/m
3
 

and μ = 1.002×10
-3

 kg/m.s. The roughness of copper pipes is ε = 1.5×10
-6

 m. 

Solution 

 

(a) The piping system of the shower alone involves 11 m of piping, a tee with line 

flow (KL = 0.9), two standard elbows (KL = 0.9 each), a fully open globe valve (KL 

= 10), and a shower head (KL = 12). Therefore, ΣKL = 0.9 + 2 × 0.9 + 10 + 12 = 

24.7. Noting that the shower head is open to the atmosphere, and the velocity heads 

are negligible, the energy equation for a control volume between points 1 and 2 

simplifies to 

 

 

 

 

Therefore, the head loss is 

 

 

 

 

 

since the diameter of the piping system is constant. The average velocity in the 

pipe, the Reynolds number, and the friction factor are 
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This is a set of four equations with four unknowns, and solving them with an 

equation solver gives 

 

Therefore, the flow rate of water through the shower head is 0.53 L/s.  

(b) When the toilet is flushed, the float moves and opens the valve. The discharged 

water starts to refill the reservoir, resulting in parallel flow after the tee connection. 

The head loss and minor loss coefficients for the shower branch were determined 

in (a) to be hL,2 = 18.4 m and ΣKL,2 = 24.7, respectively. The corresponding 

quantities for the reservoir branch can be determined similarly to be 
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Solving these 12 equations in 12 unknowns simultaneously using an equation 

solver, the flow rates are determined to be 
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Chapter Two 

Minor Losses in Pipe Systems 
 
 

2.1. TURBULENT FLOW IN PIPES 

The fluid in a typical piping system passes through various fittings, valves, bends, 

elbows, tees, inlets, exits, enlargements, and contractions in addition to the pipes. 

These components interrupt the smooth flow of the fluid and cause additional 

losses because of the flow separation and mixing they induce. In a typical system 

with long pipes, these losses are minor compared to the total head loss in the pipes 

(the major losses) and are called minor losses. Although this is generally true, in 

some cases the minor losses may be greater than the major losses. This is the case, 

for example, in systems with several turns and valves in a short distance. The head 

loss introduced by a completely open valve, for example, may be negligible. But a 

partially closed valve may cause the largest head loss in the system, as evidenced 

by the drop in the flow rate. Flow through valves and fittings is very complex, and 

a theoretical analysis is generally not plausible. Therefore, minor losses are 

determined experimentally, usually by the manufacturers of the components. 

Minor losses are usually expressed in terms of the loss coefficient KL (also called 

the resistance coefficient), defined as (Fig. 2.1) 

 

 

 

 

 

 Figure 2.1: For a constant-diameter section of a pipe with a minor loss component, the loss coefficient of 

the component (such as the gate valve shown) is determined by measuring the additional pressure loss it 

causes and dividing it by the dynamic pressure in the pipe. 
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Loss coefficient:                                                                           (2.1) 

 

where hL is the additional irreversible head loss in the piping system caused by 

insertion of the component, and is defined as [hL = ∆PL /ρg]. For example, imagine 

replacing the valve in Figure 2.1 with a section of constant diameter pipe from 

location 1 to location 2. ∆PL is defined as the pressure drop from 1 to 2 for the case 

with the valve, (P1 - P2)valve, minus the pressure drop that would occur in the 

imaginary straight pipe section from 1 to 2 without the valve, (P1 - P2 )pipe at the 

same flow rate. While the majority of the irreversible head loss occurs locally near 

the valve, some of it occurs downstream of the valve due to induced swirling 

turbulent eddies that are produced in the valve and continue downstream. These 

eddies “waste” mechanical energy because they are ultimately dissipated into heat 

while the flow in the downstream section of pipe eventually returns to fully 

developed conditions. When measuring minor losses in some minor loss 

components, such as elbows, for example, location 2 must be considerably far 

downstream (tens of pipe diameters) in order to fully account for the additional 

irreversible losses due to these decaying eddies. 

When the inlet diameter equals outlet diameter, the loss coefficient of a component 

can also be determined by measuring the pressure loss across the component and 

dividing it by the dynamic pressure, KL = ∆PL/(0.5 ρV
2
). When the loss coefficient 

for a component is available, the head loss for that component is determined from 

 

Minor loss:                                                                             (2.2) 

 

The loss coefficient, in general, depends on the geometry of the component and the 

Reynolds number, just like the friction factor. However, it is usually assumed to be 

independent of the Reynolds number. This is a reasonable approximation since 
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most flows in practice have large Reynolds numbers and the loss coefficients 

(including the friction factor) tend to be independent of the Reynolds number at 

large Reynolds numbers. Minor losses are also expressed in terms of the 

equivalent length Lequiv, defined as (Figure 2.2) 

 

 

 

 

 

 

 

 

Equivalent length:                                                                                      (2.3) 

 

where f is the friction factor and D is the diameter of the pipe that contains the 

component. The head loss caused by the component is equivalent to the head loss 

caused by a section of the pipe whose length is Lequiv. Therefore, the contribution of 

a component to the head loss can be accounted for by simply adding Lequiv to the 

total pipe length. Once all the loss coefficients are available, the total head loss in a 

piping system is determined from 

 

Total head loss (general):                                                                      (2.4) 

 

 

where i represents each pipe section with constant diameter and j represents each 

component that causes a minor loss. If the entire piping system being analyzed has 

a constant diameter, Eq. 2.4 reduces to 

Figure 2.2: The head loss caused by a component (such as the angle valve 

shown) is equivalent to the head loss caused by a section of the pipe whose 

length is the equivalent length. 
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Total head loss (D = constant):                                                          (2.5) 

  

where V is the average flow velocity through the entire system (note that V = 

constant since D = constant). Representative loss coefficients KL are given in Table 

2.1 for inlets, exits, bends, sudden and gradual area changes, and valves. 

TABLE 2.1: Loss coefficients KL of various pipe components for turbulent flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sudden expansion:                                                                          (2.6) 
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 Sudden contraction: See chart. 

 

 

 

 

 

 

 

 

 

Gradual Expansion and Contraction (based on the velocity in the smaller-diameter 

pipe) 
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Notice: These are representative values for loss coefficients. Actual values 

strongly depend on the design and manufacture of the components and may differ 

from the given values considerably (especially for valves). Actual manufacturer’s 

data should be used in the final design. 
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Flow contraction and the associated head loss at a sharp-edged pipe inlet: 

A sharp-edged inlet acts like a flow constriction. The velocity increases in the vena 

contracta region (and the pressure decreases) because of the reduced effective flow 

area and then decreases as the flow fills the entire cross section of the pipe. There 

would be negligible loss if the pressure were increased in accordance with 

Bernoulli’s equation (the velocity head would simply be converted into pressure 

head). However, this deceleration process is far from ideal and the viscous 

dissipation caused by intense mixing and the turbulent eddies convert part of the 

kinetic energy into frictional heating, as evidenced by a slight rise in fluid 

temperature. The end result is a drop in velocity without much pressure recovery, 

and the inlet loss is a measure of this irreversible pressure drop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.3: Graphical representation of flow contraction and the associated head loss at a sharp-

edged pipe inlet. 
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Even slight rounding of the edges can result in significant reduction of KL, as 

shown in Figure 2.4. The loss coefficient rises sharply (to about KL= 0.8) when the 

pipe protrudes into the reservoir since some fluid near the edge in this case is 

forced to make a 180° turn. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sudden or gradual expansion or contraction sections: 

Piping systems often involve sudden or gradual expansion or contraction sections 

to accommodate changes in flow rates or properties such as density and velocity. 

The losses are usually much greater in the case of sudden expansion and 

contraction (or wide-angle expansion) because of flow separation. By combining 

the conservation of mass, momentum, and energy equations, the loss coefficient 

for the case of sudden expansion is approximated as 

Sudden expansion:                                                                                            (2.7) 

 

where Asmall and Alarge are the cross-sectional areas of the small and large pipes, 

respectively. 

Figure 2.4: The effect of rounding of a pipe inlet on the loss coefficient. 
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At any such exit, whether laminar or turbulent, the fluid leaving the pipe loses all 

of its kinetic energy as it mixes with the reservoir fluid and eventually comes to 

rest through the irreversible action of viscosity. This is true, regardless of the shape 

of the exit (Table 2.1 and Figure 2.5). Therefore, there is no need to round the pipe 

exits. 

The losses during changes of direction can be minimized by making the turn 

“easy” on the fluid by using circular arcs (like the 90° elbow) instead of sharp turns 

(like miter bends) (Figure 2.6). But the use of sharp turns (and thus suffering a 

penalty in loss coefficient) may be necessary when the turning space is limited. 

 

 

 

 

 

 

 

 

 

Figure 2.5: All the kinetic energy of the flow is “lost” (turned into thermal energy) through friction 

as the jet decelerates and mixes with ambient fluid downstream of a submerged outlet. 

Figure 2.6: The losses during changes of direction can be minimized by making the turn “easy” on 

the fluid by using circular arcs instead of sharp turns. 
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Example 2.1:  

A 6-cm-diameter horizontal water pipe expands gradually to a 9-cm-diameter pipe 

(Figure 2.7). The walls of the expansion section are angled 30° from the horizontal. 

The average velocity and pressure of water before the expansion section are 7 m/s 

and 150 kPa, respectively. Determine the head loss in the expansion section and 

the pressure in the larger-diameter pipe. 

Solution: 

We take the density of water to be ρ= 

1000 kg/m
3
. The loss coefficient for 

gradual expansion of θ = 60° total 

included angle is KL= 0.07. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Schematic for Example 2.1. 
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Example 2.2:  

Consider flow from a water reservoir through a circular hole of diameter D at the 

side wall at a vertical distance H from the free surface. The flow rate through an 

actual hole with a sharp-edged entrance (KL = 0.5) will be considerably less than 

the flow rate calculated assuming “frictionless” flow and thus zero loss for the 

hole. Disregarding the effect of the kinetic energy correction factor, obtain a 

relation for the “equivalent diameter” of the sharp-edged hole for use in frictionless 

flow relations. 

Solution: 

The loss coefficient is KL = 0.5 for the sharp-edged 

entrance, and KL = 0 for the “frictionless” flow. We take 

point 1 at the free surface of the reservoir and point 2 at 

the exit of the hole, which is also taken to be the 

reference level (z2 = 0). Noting that the fluid at both 

points is open to the atmosphere (and thus P1 = P2 = 

Patm) and that the fluid velocity at the free surface is zero 

(V1 = 0), the energy equation for a control volume 

between these two points (in terms of heads) simplifies 

to       

 

 

 

 

 

 

 

 

 

Note that in the special case of KL= 0 (frictionless flow), the velocity relation 

reduces to the Toricelli equation, V2,frictionless= 2gH. The flow rate in this case 

through a hole of De (equivalent diameter) is 

 

                                                                                               (2) 

Setting Eqs. (1) and (2) equal to each other gives the desired relation for the 

equivalent diameter, 

 

 

Figure 2.8: Schematic for Example 2.2. 
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Example 2.3:  

A horizontal pipe has an abrupt expansion from D1 = 8 cm to D2 = 16 cm. The 

water velocity in the smaller section is 10 m/s and the flow is turbulent. The 

pressure in the smaller section is P1 = 300 kPa. Taking the kinetic energy 

correction factor to be 1.06 at both the inlet and the outlet, determine the 

downstream pressure P2, and estimate the error that would have occurred if 

Bernoulli’s equation had been used. 

Solution:  

Properties: the density of water to be ρ = 1000 kg/m
3
. 

The downstream velocity of water is, 

 

 

 

 

The loss coefficient for sudden expansion and the head loss can be calculated from 

 

 

 

 

 

 

Noting that z1 = z2 and there are no pumps or turbines involved, the energy equation for the 

expansion section can be expressed in terms of heads as 

 

 

 

                                                                   

                                                                              Solving for P2 and substituting, 
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When the head loss is disregarded, the downstream pressure is determined from the Bernoulli 

equation to be 

 

 

 

 

Substituting, 

 

 

 

 

 

Therefore, the error in the Bernoulli equation is 

 

 

 

Note that the use of the Bernoulli equation results in an error of (347 – 322) / 322 = 0.078 or 

7.8%. 


